

FECURIA

Baffle curtains are used in water treatment to improve flow characteristics and to increase the effectiveness of water treatment.

Baffle curtains prevent short-cutting in water treatment in both drinking water and effluent treatment applications. In drinking water treatment applications, baffle curtains are placed in clearwells and reservoirs to increase the contact time of chlorine with the water. In effluent treatment applications, a floating baffle curtain eliminates short-cutting in the treatment pond, ensuring that all water has had the required time for the biological breakdown of the effluent to take full effect. We can fabricate and install baffles from several different types of materials to suit your specific water applications. Fixed and floating baffle curtains are available for all sizes of ponds and reservoirs. In concrete reservoirs and tanks, we commonly attach the curtains to the floor and roof. In open ponds, we typically use floats and cables to hold the baffles in place.

INCREASES WATER TREATMENT EFFECTIVENESS

IMPROVES FLOW

The geosynthetics company that always delivers the best technical expertise and innovative solutions you need, at the quality you and your customer expect.

WE PR®TECT

BAFFLE CURTAINS

Installation

Baffle curtains are attached to the floor and ceiling of clearwells using stainless steel components bolted into the concrete. Using mechanical or chemically set anchor bolts (depending on the concretes condition), our staff fastens the curtain to the roof of the clearwell first using a top prefabricated rope hem. Once the curtain is hung from the roof, the three remaining sides are located and fastened. It is common practice to fit hatches in the body of the curtains for access between sections of the clearwell. Hatches are made with bolted sections of stainless steel holding a section of fabric curtain in place. Installation of floating baffle curtains for effluent ponds can vary by location and application. Typically a series of structural posts are placed around the perimeter of the pond to anchor the baffles. Then the prefabricated baffles are assembled and pulled into place in the pond and secured.

Product Details		XR Minimum Material Properties			
	ASTM	XR-R® (8130)	XR-3® (8130) PW		
Thickness	D751	30 mil 0.766 mm	30 mil 0.766 mm		
Tensile Strength (MD/CD)	D751	550/550 lb 2,450/2,450 N	550/550 lb 2,450/2,450 N		
Puncture Resistance	D4483	275 lb 1,200 N	275 lb 1,200 N		
Tear Strength (MD/CD)	D751	40 x 55 lb 175 x 245 N	40 x 55 lb 175 x 245 N		
Low Temperature	D2136	-30°F -35°C	-30°F -35°C		
Dimensional Stability	D1204	0.5% max each direction 0.5% max each direct			
Hydrostatic Resistance	D751 (A)	800 psi 5.51 mPa	800 psi 5.51 mPa		

		CSPE Minimum Material Properties				
	ASTM	M-283	M-284	M-954	M-423	M-529
Thickness	D751	36 mil 0.9 mm	45 mil 1.14 mm	45 mil 1.14 mm	60 mil 1.5 mm	60 mil 1.5 mm
Tensile Strength (MD/CD)	D751	225 lbs 1000 N	250 lbs 1100 N	250 lbs 1100 N	300 lbs 1300 N	390 lbs 1700 N
Elongation	D751	50%	60%	60%	75%	30%
Puncture	FTMS101 (2031)	200 lbs 890 N	225 lbs 1000 N	225 lbs 1000 N	250 lbs 1100 N	400 lbs 1780 N
Ozone Resistance	D1149	No Effect	No Effect	No Effect	No Effect	No Effect
Hydrostatic Resistance	D751A	300 psi 2100 kPa	350 psi 2400 kPa	375 psi 2600 kPa	400 psi 2760 kPa	500 psi 3450 kPa
Tear Strength	D751	70 lbs 310 N	80 lbs 350 N	80 lbs 350 N	80 lbs 350 N	130 lbs 580 N
Low Temperature	D2136	-40°F -40°C	-40°F -40°C	-40°F -40°C	-40°F -40°C	-40°F -40°C

